
Automatically Detecting Banner Ads in Web Pages
Douglas Greiman

Stanford University, Stanford, CA 94305
duggelz@gmail.com

1. Introduction
This paper describes AdZap, a program for
detecting and blocking advertisements on web
pages. AdZap uses a set of labeled training data
collected from the user as input to a supervised
learning algorithm. The trained algorithm then
examines images embedded in HTML
documents shown to the user and hides images
classified as advertisements.

2. Background
There are a number of mechanisms for
delivering advertisements on the web. For
simplicity, AdZap only considers IMG tags,
which are the most common mechanism. An
HTML document contains embedded images
where each image is represented by an IMG
element. An IMG element has a set of HTML
attributes, and a set of CSS attributes. One of
the HTML attributes is a URL pointing to the
image file to be displayed in the document. In
the rest of this paper, references to “HTML
attributes” will mean all attributes except the
URL.

Advertisement URLs are usually generated by
ad-serving software based on the location and
content of the document in which they appear,
along with other factors such as current
advertisement inventory. The same page
viewed at different times will display different
advertisements, although usually in the same
format and the same location on the page.
There are a large number of different ad-serving
software packages available. Each package
constructs URLs in a fairly arbitrary and
distinctive way.

There are also number of ad-blocking software

packages available to detect and block
advertisements on web pages. Currently, these
ad-blockers use hand-constructed lists of
regular expressions. Every URL fetched by the
user's browser is compared against the regular
expressions. Images that match are hidden
from display or replaced with a blank image.
Other HTML and CSS attributes of the images
are ignored.

Lists of regular expressions are reasonably
effective for advertisements already seen.
However, they require regular maintenance.
Furthermore, the great majority of end users are
not capable of or willing to craft regular
expressions to identify advertisements. Thus,
ad-blocking programs rely on lists maintained
by small groups of experts and distributed to
end users on a regular basis.

3. Classifying Images
AdZap constructs labeled feature vectors based
on clicks from the user, as described below.
There are two possible labels: “ad” and “not-
ad”. These vectors are used to train a Naïve
Bayes Multivariate Bernoulli event model. The
model is retrained each time the user creates a
new feature vector. When the model changes,
all currently displayed images are reclassified
and redisplayed as appropriate.

An image has two types of information
associated with it: image content, and image
context. Image content is the actual pixel data
of the image. Image context is all the ancillary
information required by the browser to locate
and display the image correctly. AdZap, like all
other ad-blockers, only uses context
information. The actual content of the image is
not examined.

http://www.acropdf.com


There is a lot of context information available
for use. The IMG element contains HTML and
CSS attributes, which are key-value pairs with
semantics based on key names. The most
important is the "src" attribute, whose value is
the URL of the image file to display. This
attribute is treated separately from all others.

3.1 Feature Construction
AdZap uses a very simple method of creating
features from the URL. The URL is broken
into tokens at non-alphanumeric boundaries.
Series of tokens that are separated only by dots
or hyphens are joined together to create
additional larger tokens. For example, the URL
“http://speed.pointroll.com/Point-
Roll/…” is translated to the feature set:
{“url:speed”, “url:pointroll”,
“url:com”, “url:speed.pointroll.com”,
“url:Point”, “url:Roll”, “url:Point-
Roll”, … }. The hostname is not
distinguished from the other parts of the URL.
It is common for ad URLs to include
redirection steps, where the actual address of
the image file is embedded as a query
parameter inside a URL to a redirector site, for
user tracking and other purposes.

AdZap uses another simple method of creating
features from the HTML and CSS attributes.
Each key/value pair is concatenated into a
single token. For example, <IMG height=”20”
border=”1”> is translated to the feature set
{“attribute:height:20”,
“attribute:border:1”}.

Note that attributes with the same key and
different values are treated as unrelated by the
model. That is, “height:20” and
“height:30” are separate dimensions in the
feature vector, with possible values 0 and 1,
rather than a single dimension “height” with
values from 0 to 1000. Also, integer valued
attributes are not grouped into a smaller number
of buckets (e.g. values from “height:25” to
“height:35” are not normalized to
“height:30”). This is motivated by the fact
that the ad industry has a set of standard ad

sizes, specified to the pixel. An image with one
of the standard sizes is very likely an ad, and
conversely, a size that is even one pixel
different is much less likely to be an ad.

Location of the image on the page is also
informative: banner advertisements are
commonly placed along the top and right side
of web pages, and less often on the left side or
in the center. However, location is a difficult
attribute to work with, since it depends on the
shape, size and layout of the browser window
and the rest of the document. Maximizing the
browser window, adding or removing UI
elements to the browser window, or even
changing the font, can change the location of
images. AdZap currently ignores attributes
specifying location.

4. Implementation
AdZap is a Firefox browser plugin. Note that
AdZap is a new piece of software and is
unrelated to the “adzapper” package for squid
proxies.

When a document is first loaded in the browser,
each IMG tag is examined, and classified as
“ad” or “not-ad” by the model. Ads are hidden
by rendering them 90% transparent. This
makes ads virtually invisible, but still makes the
image visible enough for the user to recover
from classification errors.

AdZap adds some controls to the browser
window. Clicking on the AdZap button puts the
browser in “zapping mode”. In zapping mode,
a left-click on an image labels that image as an
“ad”. Similarly, a right-click labels the image
as “not-ad”. The image list at the bottom of the
window contains all the images in the current
document, and left and right clicks in this list
behave the same as zapping mode clicks.
Labels created by these clicks are saved in a
persistent store, and the model is retrained each
time the user clicks.

http://speed.pointroll.com/Point-
http://www.acropdf.com


Figure 1:AdZap User Interface

4.1 Training Data
The first design of AdZap only allowed the user
to label ads. Every image on a page that was
not explicitly labeled “ad” was implicitly
labeled “not-ad” and used to train the model.

This implicit labeling works poorly.
Experienced web surfers have trained
themselves to identify and ignore ads at a
subconscious level ("ad blindness"), so it is
easy to overlook ads even when consciously
looking for them. Beyond that, pages contain
dozens, sometimes of hundreds of images that

are small, unobtrusive, or even invisible. For
example, CNN’s home page has more than 160
images. A small number are ads or news
photos. The majority are company logos,
invisible “web bugs”, partner logos, icons of
unknown purpose, cobranding logos, and more.
Web bugs are a particular problem, because
their URLs are very similar to ad image URLs,
but they never get marked as ads because they
are invisible.

Finally, there are many images that are simply
ambiguous. For example, Forbes’ home page
contains a medium-sized image of a vehicle
linked to ForbesAutos.com. On the one hand,

http://www.acropdf.com


this is a legitimate navigation link to another
section of Forbes’ web site. ForbesAutos.com
contains free auto reviews and other meaningful
content. On the other hand, the image
prominently features a Lincoln Towncar, and
clicking the link takes you directly to the
Lincoln section of ForbesAutos.com, complete
with ads by Lincoln and links to purchase a
Lincoln. It’s purposely unclear where the
dividing line between editorial content and
advertising is.

This was a real problem until I realized that, for
the great majority of images on the web, their
proper classification is “don’t know and don’t
care”. The user cares about the large, flashing,
annoying ads, and the large, interesting,
meaningful photos and other actual content.
Everything else is ignorable.

The second and current design of AdZap
introduces a category of “ignore”. All images
smaller that a certain area are “ignore”. This
takes care of web bugs, company logos, and the
like. Images that are very narrow or very short
are also “ignore”. This takes care of border art
and lines. Images in “ignore” are not used as
training data (unless explicitly relabeled as “ad”
or “not-ad” by the user), and are not classified
by the model. They are displayed normally in
the browser.

Furthermore, the second design of AdZap
allows the user to explicitly label images as
“not-ad” as well as “ad”. These labeled images
are used as training data. Images that are not
labeled are not used as training data, however
they are classified by the model and hidden if
classified as an “ad”. Since “ad” images are
rendered mostly transparent instead of totally
hidden, this creates a simple feedback loop with
the user. When the user notices misclassified
images, they can explicitly label them and thus
improve the model.

5. Experimental Results
It was not immediately clear what the best way
to gather training data was. One could imagine
enumerating all the web pages in existence and

visiting a random sample of them. This has
some logistical problems, and it’s not clear that
this would actually be representative of a real
user experience anyway.

I decided to visit a selection of news sites.
These sites offer a rich selection of news
photos, advertisements, and miscellaneous
images. My test procedure was to visit
news.google.com, and for each story on the
front page, follow the top three links for that
story. Each story link goes to an article page on
a news site like nytimes.com. On each article
page, I classified every visible image as “ad”,
“not-ad” or “don’t know and don’t care” (by
not clicking on that image). I repeated this
procedure at intervals, since the stories on
news.google.com change over time, until I had
sufficient data points.

This training data was used to evaluate the
model using different sets of features, as shown
on Figure 2 (see next page). Each color
represents a model that incorporates only the
features listed in the legend above. Each
feature set was evaluated using 20-fold cross-
validation on training sets of various sizes.

6. Conclusions
Training a Naïve Bayes model on image URLs
is very effective at identifying ads. The few
errors that occur have little negative effect on
the user’s browsing experience. Some error is
unavoidable due to the inherent ambiguity of
certain images.

Training a model on HTML and CSS attributes
is not very effective at identifying ads. There
are a number of standardized shapes and
positions for banner ads, and these types of ads
are detected easily. However, images in
unusual places, such as the center of the page,
or images with unusual shapes, are poorly
classified.

Training on both URLs and HTML attributes
isn’t any better than training on just URLs.
This might be due to overtraining.

http://www.acropdf.com


Figure 2:Evaluation on various feature sets

0 200 400 600 800 1000 1200
0

5

10

15

20

25

Training Set Size

C
ro

ss
Va

lid
at

io
n

Er
ro

rR
at

e
(%

)

CSS style attributes
HTML tag attributes
CSS+HTML
URL Hostname
URL Path
URL
URL+CSS+HTML

7. Future Work:
Currently, ad URLs are distinctively different
from non-ad URLs. However, if large numbers
of users started using ad-blocking software, ad
companies would probably respond by making
their URLs indistinguishable from other image
URLs, which would be fairly easy. If this
happened, then ad classification based on
HTML attributes like size and location would
become relatively more useful, since these
attributes can’t be obfuscated like the URL can.

It might be possible to improve the
performance of HTML features by more
complex analysis of web pages. For example,
most advertisements are clickable links,
meaning that the IMG element is contained
inside an A element. The A element has its own
attributes, and its own URL, describing where
the user will be sent if they click on the
advertisement.

8. References
Nielsen, Jakob, “Banner Blindness: Old and
New Findings”, Jacob Nielson’s Alertbox,
http://www.useit.com/alertbox/banner-
blindness.html (accessed December 15, 2007).

Ragget, Dave, Arnaud Le Hors, and Ian Jacobs,
ed. “HTML 4.01 Specification”, W3C,
http://www.w3.org/TR/REC-html40/ (accessed
December 15, 2007).

“Extensions”, Mozilla Foundation,
http://developer.mozilla.org/en/docs/Extensions
(accessed December 15, 2007)

“adblock”, The Adblock Project,
http://adblock.mozdev.org (accessed December
15, 2007)

http://www.useit.com/alertbox/banner-
http://www.w3.org/TR/REC-html40/
http://developer.mozilla.org/en/docs/Extensions
http://adblock.mozdev.org
http://www.acropdf.com

